miércoles, 5 de enero de 2011

He Withholds No GOOD THING

He Withholds No
Good Thing


TODAY’S SCRIPTURE
“For the Lord God is a sun and shield; the Lord bestows favor and honor; no good thing does He withhold from those whose walk is blameless”
(Psalm 84:11, NIV)



TODAY’S WORD from Joel and Victoria
What do you need from the Lord today? Do you need peace, provision or guidance? The Word of God promises that no good thing will He withhold from those who walk blamelessly before Him. Now you may be thinking, “Joel, I’m not perfect. How can I have a blameless walk?” The Good News is, when you receive Jesus as your Lord and Savior, you automatically have a new, blameless walk. The past is erased in God’s eyes. Sure, you may make mistakes from time to time, but 1 John 1:9 says, “If we confess our sins, He is faithful and just to forgive us our sins and to cleanse us from all unrighteousness.”

Understand today that God wants to pour His favor and honor on you. If you feel like there is anything in your life that you need to be cleansed from, go to the Father today and confess it to Him. Let Him make you new so that you can receive the good things He has in store for you!



A PRAYER FOR TODAY
Heavenly Father, thank You for loving me and choosing to pour out Your favor and blessing on me today. Thank You for giving me a new beginning and making me blameless in Your eyes. Search my heart today and show me if there is anything that would keep me from You today. In Jesus’ Name. Amen.

— Joel & Victoria Osteen

Enlace por puente de hidrógeno.

Enlace por puente de hidrógeno
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda

Ejemplo de enlace de hidrógeno intermolecular en un complejo dimérico autoensamblado molecular reportado por Meijer y colaboradores.[1]
Enlace de hidrógeno intramolecular en la acetilacetona, que ayuda a estabilizar el tautómero enolUn enlace de hidrógeno es la fuerza super mega atractiva entre un átomo electronegativo y un átomo de hidrógeno unido covalentemente a otro átomo electronegativo. Resulta de la formación de una fuerza dipolo-dipolo con un átomo de hidrógeno unido a un átomo de nitrógeno, oxígeno o flúor (de ahí el nombre de "enlace de hidrógeno", que no debe confundirse con un enlace covalente a átomos de hidrógeno). La energía de un enlace de hidrógeno (típicamente de 5 a 30 kJ/mol) es comparable a la de los enlaces covalentes débiles (155 kJ/mol), y un enlace covalente típico es sólo 20 veces más fuerte que un enlace de hidrógeno intermolecular. Estos enlaces pueden ocurrir entre moléculas (intermolecularidad), o entre diferentes partes de una misma molécula (intramolecularidad).[2] El enlace de hidrógeno es una fuerza de van der Waals dipolo-dipolo fija muy fuerte, pero más débil que el enlace covalente o el enlace iónico. El enlace de hidrógeno está en algún lugar intermedio entre un enlace covalente y una simple atracción electrostática intermolecular. Este tipo de enlace ocurre tanto en moléculas inorgánicas tales como el agua, y en moléculas orgánicas como el ADN.

El enlace de hidrógeno intermolecular es responsable del punto de ebullición alto del agua (100°C). Esto es debido al fuerte enlace de hidrógeno, en contraste a los otros hidruros de calcógenos. El enlace de hidrógeno intramolecular es responsable parcialmente de la estructura secundaria, estructura terciaria y estructura cuaternaria de las proteínas y ácidos nucleicos.

Contenido [ocultar]
1 Enlace
2 Historia
3 Enlaces de hidrógeno en el agua
4 Enlaces de hidrógeno bifurcados y sobrecoordinados en el agua
5 Enlaces de hidrógeno en ADN y proteínas
6 Enlace de hidrógeno simétrico
7 Enlace de dihidrógeno
8 Teoría avanzada del enlace de hidrógeno
9 Fenómenos debidos al enlace de hidrógeno
10 Referencias
11 Enlaces externos

[editar] Enlace
Un átomo de hidrógeno unido a un átomo relativamente electronegativo es un átomo donante del enlace de hidrógeno.[3] Este átomo electronegativo suele ser flúor, oxígeno o nitrógeno. Un átomo electronegativo tal como el flúor, oxígeno o nitrógeno es un aceptor de enlace de hidrógeno, sin importar si está enlazado covalentemente o no a un átomo de hidrógeno. Un ejemplo de un donante de enlace de hidrógeno es el etanol, que tiene un átomo de hidrógeno enlazado covalentemente al oxígeno; un ejemplo de aceptor de enlace de hidrógeno que no tiene un átomo de hidrógeno enlazado covalentemente a él es el átomo de oxígeno en el éter dietílico.


Ejemplos de grupos donantes de enlace de hidrógeno, y grupos aceptores de enlace de hidrógeno
Los ácidos carboxílicos suelen formar dímeros en la fase de vaporEl carbono también puede participar en enlaces de hidrógeno, cuando el átomo de carbono está enlazado a algunos átomos electronegativos, como en el caso de cloroformo, CHCl3. El átomo electronegativo atrae la nube electrónica alrededor del núcleo de hidrógeno y, al decentralizar la nube, deja al átomo con una carga positiva parcial. Debido al pequeño tamaño del hidrógeno en comparación a otros átomos y moléculas, la carga resultante, aunque sólo parcial, no representa una gran densidad de carga. Un enlace de hidrógeno resulta cuando esta densidad de carga positiva fuerte atrae a un par libre de electrones de otro heteroátomo, que se convierte en el aceptor de enlace de hidrógeno.

El enlace de hidrógeno suele ser descrito como una interacción electrostática dipolo-dipolo. Sin embargo, también tiene algunas características del enlace covalente: es direccional, fuerte, produce distancias interatómicas menores que la suma de los radios de van der Waals, y usualmente involucra un número limitado de compañeros de interacción, que puede ser interpretado como un tipo de valencia. Estas características covalentes son más significativas cuando los aceptores se unen a átomos de hidrógeno de donantes más electronegativos.

La naturaleza parcialmente covalente de un enlace de hidrógeno da origen a las preguntas: "¿A qué molécula pertenece el núcleo de hidrógeno?" y "¿Cuál debería ser etiquetado como 'donante' y cuál como 'aceptor'?" Generalmente, es fácil determinar esto basándose simplemente en las distancias interatómicas del sistema X—H...Y: típicamente, la distancia X—H es ~1.1 Å, mientras que la distancia H...Y es ~ 1.6 a 2.0 Å. Los líquidos que muestran enlace de hidrógeno se llaman líquidos asociativos.

Los enlaces de hidrógeno pueden variar en fuerza, desde muy débiles (1-2 kJ mol−1) a extremadamente fuertes (>155 kJ mol−1), como en el ion HF2−.[4] Algunos valores típicos incluyen:

F—H...F (155 kJ/mol)
O—H...N (29 kJ/mol)
O—H...O (21 kJ/mol)
N—H...N (13 kJ/mol)
N—H...O (8 kJ/mol)
HO—H...:OH3+ (18 kJ/mol[5] ) (Información obtenida usando dinámica molecular como se detalla en la referencia, y debería ser comparada con 7.9 kJ/mol para agua en bruto, obtenida también usando la misma dinámica molecular.)
La longitud de los enlaces de hidrógeno depende de la fuerza del enlace, temperatura, y presión. La fuerza del enlace misma es dependiente de la temperatura, presión, ángulo de enlace y ambiente (generalmente caracterizado por la constante dieléctrica local). La longitud típica de un enlace de hidrógeno en agua es 1.97 Å (197 pm). El ángulo de enlace ideal depende de la naturaleza del donante del enlace de hidrógeno. Los resultados experimentales del donante fluoruro de hidrógeno con diversos aceptores muestran los siguientes ángulos:[6]

Aceptor···Donante Simetría TREPEV Ángulo (°)
HCN···HF lineal 180
H2CO ··· HF trigonal plana 110
H2O ··· HF piramidal 46
H2S ··· HF piramidal 89
SO2 ··· HF trigonal plana 145

[editar] Historia
En su libro The Nature of the Chemical Bond (en español: La Naturaleza del Enlace Químico), Linus Pauling concede los créditos a T.S. Moore y T.F. Winmill de la primera mención del enlace de hidrógeno, en 1912 (J. Chem. Soc. 101, 1635). Moore y Winmill usaron el enlace de hidrógeno para justificar el hecho que el hidróxido de trimetilamonio es una base más débil que el hidróxido de tetrametilamonio. La descripción del enlace de hidrógeno en su forma más conocida, en el agua, vino algunos años después, en 1920, por Latimer y Rodebush (JACS, 42, 1419).

[editar] Enlaces de hidrógeno en el agua

Captura de una simulación de agua líquida. Las líneas entrecortadas de la molécula en el centro del cuadro representan enlaces de hidrógeno.El ejemplo de enlace de hidrógeno más ubicuo,y quizás el más simple, se encuentra entre las moléculas de agua. En una molécula aislada de agua, el agua contiene dos átomos de hidrógeno y un átomo de oxígeno. Dos moléculas de agua pueden formar un enlace de hidrógeno entre ellas; en el caso más simple, cuando sólo dos moléculas están presentes, se llama dímero de agua y se usa frecuentemente como un sistema modelo. Cuantas más moléculas estén presentes, como en el caso del agua líquida, más enlaces son posibles, debido a que el oxígeno de una molécula de agua tiene dos pares libres de electrones, cada uno de los cuales puede formar un enlace de hidrógeno con átomos de hidrógeno de otras dos moléculas de agua. Esto puede repetirse, de tal forma que cada molécula de agua está unida mediante enlaces de hidrógeno a hasta cuatro otras moléculas de agua, como se muestra en la figura (dos a través de sus pares libres, y dos a través de sus átomos de hidrógeno).

El elevado punto de ebullición del agua se debe al gran número de enlaces de hidrógeno que cada molécula tiene, en relación a su baja masa molecular, y a la gran fuerza de estos enlaces de hidrógeno. El agua tiene puntos de ebullición, fusión y viscosidad muy altos, comparados con otras sustancias no unidas entre sí por enlaces de hidrógeno. La razón para estos atributos es la dificultad, para romper estos enlaces. El agua es única porque sus átomos de oxígeno tiene dos pares libres y dos átomos de hidrógeno, significando que el número total de enlaces de una molécula de agua es cuatro. Por ejemplo, el fluoruro de hidrógeno -que tiene tres pares libres en el átomo de flúor, pero sólo un átomo de hidrógeno- puede tener un total de sólo dos; el amoníaco tiene el problema opuesto: tres átomos de hidrógeno, pero sólo un par libre.

H-F...H-F...H-F
El número exacto de enlaces de hidrógeno en los que una molécula en el agua líquida participa fluctúa con el tiempo, y depende de la temperatura. A partir de simulaciones de agua líquida TIP4P a 25°C, se estima que cada molécula de agua participa en un promedio de 3,59 enlaces de hidrógeno. A 100°C, este número disminuye a 3,24, debido al incremento en el movimiento molecular y consecuente densidad disminuida, mientras que a 0°C, el número promedio de enlaces de hidrógeno se incrementa a 3,69.[7] Un estudio más reciente encontró un número mucho menor de enlaces de hidrógeno: 2,357 a 25°C[8] Las diferencias pueden deberse al uso de un método diferente para definir y contar enlaces de hidrógeno.

Donde las fuerzas de enlace son más equivalentes, se podría encontrar los átomos de dos moléculas de agua partidas en dos iones poliatómicos de carga opuesta, específicamente hidróxido (OH−) e hidronio (H3O+). (Los iones hidronio también son conocidos como iones 'hidroxonio').

H-O− H3O+
Sin embargo, en agua pura bajo condiciones normales de presión y temperatura, esta última formulación es aplicable sólo raramente; en promedio aproximadamente una en cada 5,5 × 108 moléculas cede un protón a otra molécula de agua, en concordancia con la constante de disociación para el agua bajo tales condiciones. Es una parte crucial de la unicidad del agua.

[editar] Enlaces de hidrógeno bifurcados y sobrecoordinados en el agua
Puede darse que un solo átomo de hidrógeno participe en dos enlaces de hidrógeno, en vez de en uno. Este tipo de enlace es denominado "bifurcardo". Se ha sugerido que el enlace de hidrógeno bifurcado es un paso esencial en la reorientación del agua;.[9]

Los aceptores de enlaces de hidrógeno (que terminan en los pares libres del átomo de oxígeno) son más propensos a formar la bifurcación (en efecto, se le denomina oxígeno sobrecoordinado) que los donantes.[10]

[editar] Enlaces de hidrógeno en ADN y proteínas

Enlace de hidrógeno entre guanina y citosina, uno de los dos tipos de pares de bases en el ADN.El enlace de hidrógeno también juega un rol importante en la determinación de las estructuras tridimensionales adoptadas por las proteínas y ácidos nucleicos. En estas macromoléculas, el enlace de hidrógeno entre partes de la misma molécula ocasiona que se doble en una forma específica, que ayuda a determinar el rol fisiológico o bioquímico de la molécula. Por ejemplo, la estructura de doble hélice del ADN se debe primordialmente a los enlaces de hidrógeno entre los pares de bases, que unen una cadena complementaria a la otra y permiten la replicación.

En las proteínas, los enlaces de hidrógeno se forman entre átomos de oxígeno esqueletales y átomos de hidrógeno amida. Cuando el espaciamiento de los residuos de aminoácido que participan en un enlace de hidrógeno es regular entre las posiciones i e i + 4, se forma una hélice alfa. Cuando el espaciamiento es menor, entre las posiciones i e i + 3, se forma una hélice 310. Cuando dos cadenas se unen por enlaces de hidrógeno que involucran residuos alternantes de cada cadena participante, se forma una lámina beta. Los enlaces de hidrógeno también toman parte en la formación de la estructura terciaria de las proteínas, a través de la interacción de los grupos R. (Ver también plegamiento de proteínas).

[editar] Enlace de hidrógeno simétrico
Un enlace de hidrógeno simétrico es un tipo especial de enlace de hidrógeno en el que el núcleo de hidrógeno está exactamente a mitad de camino entre dos átomos del mismo elemento. La fuerza del enlace a cada uno de estos átomos es igual. Constituye un ejemplo de un enlace de tres centros y dos electrones. Este tipo de enlace es mucho más fuerte que los enlaces de hidrógeno "normales". El orden efectivo de enlace es 0.5, así que su fuerza es comparable a un enlace covalente. Se ha visto en hielo a altas presiones, y también en la fase sólida de muchos ácidos anhidros, como el fluoruro de hidrógeno y el ácido fórmico a altas presiones. También se le ha visto en el anión bifluoruro [F-H-F]−.

Los enlaces de hidrógeno simétricos han sido observados recientemente espectroscópicamente en el ácido fórmico a presión alta (>GPa). Cada átomo de hidrógeno forma un enlace covalente parcial con dos átomos, en vez de con uno. Se ha postulado la existencia de enlaces de hidrógeno simétricos en el hielo a altas presiones (Hielo X). Se forman bajas barreras de enlace de hidrógeno cuando la distancia entre dos heteroátomos es muy pequeña.

[editar] Enlace de dihidrógeno
El enlace de hidrógeno puede ser comparado con el cercanamente relacionado enlace de dihidrógeno, que también es una interacción enlazante intermolecular que involucra a átomos de hidrógeno. Estas estructuras han sido conocidas por algún tiempo, y bien caracterizadas por cristalografía de rayos X; sin embargo, una comprensión de su relación con el enlace de hidrógeno convencional, enlace iónico y enlace covalente permanece oscura. Generalmente, el enlace de hidrógeno está caracterizado por un aceptor de protones, que es un par libre de electrones en átomos no metálicos (principalmente en el nitrógeno y oxígeno). En algunos casos, estos aceptores de protones pueden ser orbitales pi o algún complejo metálico. Sin embargo, en el enlace de dihidrógeno, un hidruro metálico sirve como aceptor de protones; formando una interacción hidrógeno-hidrógeno.

La difracción de neutrones ha mostrado que la geometría molecular de estos complejos es similar a los enlaces de hidrógeno, en el que la longitud de enlace se adapta muy bien a los sistemas complejo metálico/donante de hidrógeno.

[editar] Teoría avanzada del enlace de hidrógeno
Recientemente, la naturaleza del enlace fue elucidada. Un artículo ampliamente publicado[11] probó, a partir de interpretaciones de anisotropía en el perfil de Compton del hielo ordinario, que el enlace de hidrógeno es parcialmente covalente. Parte de la información de resonancia magnética nuclear sobre los enlaces de hidrógeno en las proteínas también indica que hay enlace covalente.

Más generalmente, el enlace de hidrógeno puede ser visto como un campo escalar electrostático dependiente de la métrica, entre dos o más enlaces intermoleculares. Esto es ligeramente diferente de los estados ligados intramoleculares de, por ejemplo, el enlace covalente o el enlace iónico; sin embargo, el enlace de hidrógeno sigue siendo un fenómeno de estado ligado, puesto que la energia de interacción tiene una suma neta negativa. La teoría inicial del enlace de hidrógeno propuesta por Linus Pauling sugería que los enlaces de hidrógeno tenían una naturaleza parcialmente covalente. Esto permaneció como una conclusión controversial hasta finales de la década de 1990, cuando mediante técnicas de RMN empleadas por F. Cordier et al. para transferir información entre núcleos enlazados por hidrógeno, una característica que sólo sería posible si el enlace de hidrógeno contuviera algún carácter covalente.

[editar] Fenómenos debidos al enlace de hidrógeno
Punto de ebullición dramáticamente alto del NH3, H2O y HF, en comparación a los análogos más pesados PH3, H2S, y HCl
Viscosidad del ácido fosfórico anhidro y del glicerol.
Formación de dímeros en ácidos carboxílicos y de hexámeros en el fluoruro de hidrógeno, que ocurre incluso en la fase gaseosa, resultando en grandes desviaciones de la ley de los gases ideales.
La alta solubilidad en agua de muchos compuestos como el amoníaco es explicada por el enlace de hidrógeno con las moléculas de agua.
La azeotropía negativa de mezclas de HF y agua.
La delicuescencia del NaOH es causada, en parte, por la reacción de OH- con la humedad para formar especies H3O2- enlazadas por hidrógeno. Un proceso análogo sucede entre NaNH2 y NH3, y entre NaF y HF.
El hecho de que el hielo es menos denso que el agua líquida se debe a una estructura cristalina estabilizada por enlaces de hidrógeno.
La presencia de enlaces de hidrógeno puede causar una anomalía en la sucesión normal de los estados de agregación para ciertas mezclas de compuestos químicos, con el incremento o disminución de temperatura. Estos compuestos pueden ser líquidos hasta una cierta temperatura, luego son sólidos incluso con el incremento de temperatura, y finalmente líquidos cuando la temperatura se eleva sobre el "intervalo anómalo".[12]
La goma inteligente utiliza enlaces de hidrógeno como su única forma de enlace, así que puede "sanarse" cuando se pincha, debido a que puede aparecer nuevos enlaces de hidrógeno entre las dos superficies del mismo polímero.
[editar] Referencias

MOLECULA DE AGUA

Molécula de agua
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda

Molécula de agua

Nombre (IUPAC) sistemático
Oxidano[1]
Agua
General
Otros nombres Óxido de hidrógeno
Hidróxido de hidrógeno
Hidrato
Ácido hídrico
Monóxido de dihidrógeno
Óxido de dihidrógeno
R-718
Dihidruro de oxígeno
Ácido hidroxílico
Hidróxido de hidronio
Ácido hidróxico
Agua leve
Agua común
Fórmula semidesarrollada HOH
Fórmula molecular H2O
Identificadores
Número CAS 7732-18-5
Número RTECS ZC0110000
Propiedades físicas
Estado de agregación Líquido
Apariencia incoloro
Densidad 1000 kg/m3; 1 g/cm3
Masa molar 18,01528 g/mol
Punto de fusión 273.15 K (0 °C)
Punto de ebullición 373.15 K (100 °C)
Estructura cristalina Hexagonal (véase hielo)
Propiedades químicas
Acidez (pKa) 15,74
Solubilidad en agua 100%
Momento dipolar 1,85 D
Termoquímica
ΔfH0gas -241,83 kJ/mol
ΔfH0líquido -285,83 kJ/mol
S0gas, 1 bar 188,84 J·mol-1·K-1
S0líquido, 1 bar 41 J·mol-1·K-1
Calor específico 1 cal/g
Peligrosidad
Número RTECS ZC0110000
Riesgos
Ingestión Necesaria para la vida; su consumo excesivo puede producir dolores de cabeza, confusión y calambres. Puede ser fatal en atletas.
Inhalación No es tóxica. Puede disolver el surfactante de los pulmones. La sofocación en el agua se denomina ahogo.
Piel La inmersión prolongada puede causar descamación.
Ojos No es peligrosa para los ojos, a no ser que tenga cloro, con el cual los ojos se irritan.
Valores en el SI y en condiciones normales
(0 °C y 1 atm), salvo que se indique lo contrario.
Exenciones y referencias

Para una visión general, véase Agua.
«H2O» redirige aquí. Para otras acepciones, véase H2O (desambiguación).
El agua es un compuesto químico formado por dos átomos de hidrógeno (H) y uno de oxígeno (O). Proveniente del latín aqua.

Contenido [ocultar]
1 Propiedades físicas y químicas
1.1 Disolvente
1.2 Polaridad
1.3 Cohesión
1.4 Adhesión
1.5 Tensión superficial
1.6 Acción capilar
1.7 Calor específico
1.8 Temperatura de fusión y evaporación
1.9 Densidad
1.10 Cristalización
1.11 Otras propiedades
2 Destilación
3 Importancia de la posición astronómica de la Tierra
3.1 El cambio del estado en el agua
3.1.1 Estado sólido
3.1.2 Estado líquido
3.1.3 Estado gaseoso
4 Notas
5 Enlaces externos
6 Referencias

[editar] Propiedades físicas y químicas
El agua pura no tiene olor, sabor, ni color, es decir, es inodora, insípida e incolora. Su importancia reside en que casi la totalidad de los procesos químicos que suceden en la naturaleza, no solo en organismos vivos sino también en la superficie no organizada de la tierra, así como los que se llevan a cabo en laboratorios y en la industria, tienen lugar entre sustancias disueltas en agua.

German Garcia descubrió en 1781 que el agua es una sustancia compuesta y no un elemento, como se pensaba desde la Antigüedad. Los resultados de dicho descubrimiento fueron desarrollados por Antoine Laurent de Lavoisier dando a conocer que el agua estaba formada por oxígeno e hidrógeno. En 1804, el químico francés Joseph Louis Gay-Lussac y el naturalista y geógrafo alemán Alexander von Humboldt publicaron un documento científico que demostraba que el agua estaba formada por dos volúmenes de hidrógeno por cada volumen de oxígeno (H2O).

Entre las moléculas de agua se establecen enlaces por puentes de hidrógeno debido a la formación de dipolos electrostáticos que se originan al situarse un átomo de hidrógeno entre dos átomos más electronegativos, en este caso de oxígeno. El oxígeno, al ser más electronegativo que el hidrógeno, atrae más, hacia este, los electrones compartidos en los enlaces covalentes con el hidrógeno, cargándose negativamente, mientras los átomos de hidrógeno se cargan positivamente, estableciéndose así dipolos eléctricos. Los enlaces por puentes de hidrógeno son enlaces por fuerzas de van der Waals de gran magnitud, aunque son unas 20 veces más débiles que los enlaces covalentes.

Los enlaces por puentes de hidrógeno entre las moléculas del agua pura son responsables de la dilatación del agua al solidificarse, es decir, su disminución de densidad cuando se congela. En estado sólido, las moléculas de agua se ordenan formando tetraedros, situándose en el centro de cada tetraedro un átomo de oxígeno y en los vértices dos átomos de hidrógeno de la misma molécula y otros dos átomos de hidrógeno de otras moléculas que se enlazan electrostáticamente por puentes de hidrógeno con el átomo de oxígeno. La estructura cristalina resultante es muy abierta y poco compacta, menos densa que en estado líquido. El agua tiene una densidad máxima de 1 g/cm³ cuando está a una temperatura de 4 ºC,[2] característica especialmente importante en la naturaleza que hace posible el mantenimiento de la vida en medios acuáticos sometidos a condiciones exteriores de bajas temperaturas.

La dilatación del agua al solidificarse también tiene efectos de importancia en los procesos geológicos de erosión. Al introducirse agua en grietas del suelo y congelarse posteriormente, se originan tensiones que rompen las rocas.

Véanse también: Hielo y Vapor de agua
[editar] Disolvente
El agua es descrita muchas veces como el solvente universal, porque disuelve muchos de los compuestos conocidos. Sin embargo, no lo es (aunque es tal vez lo más cercano), porque no disuelve a todos los compuestos y, de hacerlo, no sería posible construir ningún recipiente para contenerla.

El agua es un disolvente polar, más polar, por ejemplo, que el etanol. Como tal, disuelve bien sustancias iónicas y polares, como la sal de mesa (cloruro de sodio). No disuelve, de manera apreciable, sustancias fuertemente apolares, como el azufre en la mayoría de sus formas alotrópicas, además, es inmiscible con disolventes apolares, como el hexano. Esta cualidad es de gran importancia para la vida.

Esta selectividad en la disolución de distintas clases de sustancias se debe a su capacidad para formar puentes de hidrógeno con otras sustancias que pueden presentar grupos polares, o con carga iónica, como: alcoholes, azúcares con grupos R-OH, aminoácidos y proteínas con grupos que presentan cargas parciales + y − dentro de la molécula, lo que da lugar a disoluciones moleculares. También, las moléculas de agua pueden disolver sustancias salinas que se disocian formando disoluciones iónicas.

En las disoluciones iónicas, los iones de las sales orientan, debido al campo eléctrico que crean a su alrededor, a los dipolos del agua, quedando "atrapados" y recubiertos de moléculas de agua en forma de iones hidratados o solvatados.

Algunas sustancias, sin embargo, no se mezclan bien con el agua, incluyendo aceites y otras sustancias hidrofóbicas. Membranas celulares, compuestas de lípidos y proteínas, aprovechan esta propiedad para controlar las interacciones entre sus contenidos químicos y los externos, lo que se facilita, en parte, por la tensión superficial del agua.

La capacidad disolvente es responsable de:

Las funciones metabólicas
Los sistemas de transporte de sustancias en los organismos
[editar] Polaridad
La molécula de agua es muy polar, puesto que hay una gran diferencia de electronegatividad entre el hidrógeno y el oxígeno. Los átomos de oxígeno son mucho más electronegativos (atraen más a los electrones) que los de hidrógeno, lo que dota a los dos enlaces de una fuerte polaridad eléctrica, con un exceso de carga negativa del lado del oxígeno, y de carga positiva del lado de los hidrógenos. Los dos enlaces no están opuestos, sino que forman un ángulo de 104,45° debido a la hibridación sp3 del átomo de oxígeno así que, en conjunto, los tres átomos forman un molécula angular, cargado negativamente en el vértice del ángulo, donde se ubica el oxígeno y, positivamente, en los extremos de la molécula, donde se encuentran los hidrógenos. Este hecho tiene una importante consecuencia, y es que las moléculas de agua se atraen fuertemente, adhiriéndose por donde son opuestas las cargas. En la práctica, un átomo de hidrógeno sirve como puente entre el átomo de oxígeno al que está unido covalentemente y el oxígeno de otra molécula. La estructura anterior se denomina enlace de hidrógeno o puente de hidrógeno.

El hecho de que las moléculas de agua se adhieran electrostáticamente, a su vez modifica muchas propiedades importantes de la sustancia que llamamos agua, como la viscosidad dinámica, que es muy grande, o los puntos (temperaturas) de fusión y ebullición o los calores de fusión y vaporización, que se asemejan a los de sustancias de mayor masa molecular.

[editar] Cohesión
La cohesión es la propiedad con la que las moléculas de agua se atraen entre sí. Debido a esta interacción se forman cuerpos de agua por adhesión de moléculas de agua, las gotas.

Los puentes de hidrógeno mantienen las moléculas de agua fuertemente unidas, formando una estructura compacta que la convierte en un líquido casi incompresible. Al no poder comprimirse puede funcionar en algunos animales como un esqueleto hidrostático, como ocurre en algunos gusanos perforadores capaces de agujerear la roca mediante la presión generada por sus líquidos internos. Estos puentes se pueden romper fácilmente con la llegada de otra molécula con un polo negativo o positivo dependiendo de la molécula, o, con el calor.

La fuerza de cohesión permite que el agua se mantenga líquida a temperaturas no extremas.

[editar] Adhesión
El agua, por su gran potencial de polaridad, cuenta con la propiedad de la adhesión, es decir, el agua generalmente es atraída y se mantiene adherida a otras superficies.

[editar] Tensión superficial

Imagen del efecto que produce al caer una gota de agua en la superficie del líquido.Por su misma propiedad de cohesión, el agua tiene una gran atracción entre las moléculas de su superficie, creando tensión superficial. La superficie del líquido se comporta como una película capaz de alargarse y al mismo tiempo ofrecer cierta resistencia al intentar romperla; esta propiedad contribuye a que algunos objetos muy ligeros floten en la superficie del agua.

Debido a su elevada tensión superficial, algunos insectos pueden estar sobre ella sin sumergirse e, incluso, hay animales que corren sobre ella, como el basilisco. También es la causa de que se vea muy afectada por fenómenos de capilaridad.

Las gotas de agua son estables también debido a su alta tensión superficial. Esto se puede ver cuando pequeñas cantidades de agua se ponen en superficies no solubles, como el vidrio, donde el agua se agrupa en forma de gotas.

[editar] Acción capilar
El agua cuenta con la propiedad de la capilaridad, que es la propiedad de ascenso, o descenso, de un líquido dentro de un tubo capilar. Esto se debe a sus propiedades de adhesión y cohesión.

Cuando se introduce un capilar en un recipiente con agua, ésta asciende espontáneamente por el capilar como si trepase "agarrándose" por las paredes, hasta alcanzar un nivel superior al del recipiente, donde la presión que ejerce la columna de agua se equilibra con la presión capilar. A este fenómeno se debe, en parte, la ascensión de la savia bruta, desde las raíces hasta las hojas, a través de los vasos leñosos.

[editar] Calor específico
Esta propiedad también se encuentra en relación directa con la capacidad del agua para formar puentes de hidrógeno intermoleculares. El agua puede absorber grandes cantidades de calor que es utilizado para romper los puentes de hidrógeno, por lo que la temperatura se eleva muy lentamente. El calor específico del agua se define como la cantidad de energía necesaria para elevar la temperatura, en un grado celsius, a un gramo de agua en condiciones estándar y es de 1 cal/°C•g, que es igual a 4,1840 J/C•g.

Esta propiedad es fundamental para los seres vivos (y la Biosfera en general) ya que gracias a esto, el agua reduce los cambios bruscos de temperatura, siendo un regulador térmico muy bueno. Un ejemplo de esto son las temperaturas tan suaves que hay en las zonas costeras, que son consecuencias de estas propiedad. También ayuda a regular la temperatura de los animales y las células permitiendo que el citoplasma acuoso sirva de protección ante los cambios de temperatura. Así se mantiene la temperatura constante.

La capacidad calorífica del agua es mayor que la de otros líquidos.

Para evaporar el agua se necesita mucha energía. Primero hay que romper los puentes y posteriormente dotar a las moléculas de agua de la suficiente energía cinética para pasar de la fase líquida a la gaseosa. Para evaporar un gramo de agua se precisan 540 calorías, a una temperatura de 20 °C.

[editar] Temperatura de fusión y evaporación
Presenta un punto de ebullición de 100 °C (373,15 K) a presión de 1 atmósfera (se considera como estándar para la presión de una atmósfera la presión promedio existente al nivel del mar). El calor latente de evaporación del agua a 100 °C es 540 cal/g (ó 2260 J/g).

Tiene un punto de fusión de 0 °C (273,15 K) a presión de 1 atm. El calor latente de fusión del hielo a 0 °C es 80 cal/g (ó 335 J/g). Tiene un estado de sobreenfriado líquido a −25 °C.

La temperatura crítica del agua, es decir, aquella a partir de la cual no puede estar en estado líquido independientemente de la presión a la que esté sometida, es de 374 ºC y se corresponde con una presión de 217,5 atmósferas.

[editar] Densidad
La densidad del agua líquida es muy estable y varía poco con los cambios de temperatura y presión.

A la presión normal (1 atmósfera), el agua líquida tiene una mínima densidad a los 100 °C, donde tiene 0,958 kg/L. Mientras baja la temperatura, aumenta la densidad (por ejemplo, a 90 °C tiene 0,965 kg/L) y ese aumento es constante hasta llegar a los 4,0 °C donde alcanza una densidad de 1 kg/L. A esa temperatura (4,0 °C) alcanza su máxima densidad (a la presión mencionada). A partir de ese punto, al bajar la temperatura, la densidad comienza a disminuir, aunque muy lentamente, hasta que a los 0 °C disminuye hasta 0,9999 kg/L. Cuando pasa al estado sólido (a 0 °C), ocurre una brusca disminución de la densidad pasando de 0,9999 kg/L a 0,917 kg/L.

[editar] Cristalización
La cristalización es el proceso por el que el agua pasa de su estado líquido al sólido cuando la temperatura disminuye de forma continua.

[editar] Otras propiedades
pH neutro.!
Con ciertas sales forma hidratos.
Reacciona con los óxidos de metales formando bases.
Es catalizador en muchas reacciones químicas.
Presenta un equilibrio de autoionización, en el cual hay iones H3O+ y OH−.
Estudio Hidrobiológico

La realización de un estudio hidrobiológico permite:

Proporcionar datos sobre el estado de un sistema acuático de forma regular. Documentar la variabilidad a corto y largo plazo de la calidad del agua por fenómenos naturales o actividades humanas. Evaluar el impacto de la polución producido por la actividad humana. Evaluar la influencia de ciertas zonas de muestreo sobre la fauna del lugar. Evaluar las características hidráulicas del cauce del río y la evolución del caudal mediante medidas de flujo. De esta manera, se puede establecer las variaciones de caudal que sufre el río a lo largo de ciclo estacional y anual. Realizar un estudio de la rivera. Evaluar los Índices Biológicos.

[editar] Destilación
Artículo principal: Agua destilada
Para obtener agua químicamente pura es necesario realizar diversos procesos físicos de purificación ya que el agua es capaz de disolver una gran cantidad de sustancias químicas, incluyendo gases.

Se llama agua destilada al agua que ha sido evaporada y posteriormente condensada. Al realizar este proceso se eliminan casi la totalidad de sustancias disueltas y microorganismos que suele contener el agua y el resultado es prácticamente la sustancia química pura H2O.

El agua pura no conduce la electricidad, pues está libre de sales y minerales.

[editar] Importancia de la posición astronómica de la Tierra
La coexistencia de las fases sólidas, líquidas y gaseosas pero, sobre todo, la presencia permanente de agua líquida, es vital para comprender el origen y la evolución de la vida en la Tierra tal como es. Sin embargo, si la posición de la Tierra en el Sistema Solar fuera más cercana o más alejada del Sol, la existencia de las condiciones que permiten a las formas del agua estar presentes simultáneamente serían menos probables.

La masa de la Tierra permite mantener la atmósfera. El vapor de agua y el dióxido de carbono en la atmósfera causan el efecto invernadero, lo que ayuda a mantener relativamente constante la temperatura superficial. Si el planeta tuviera menos masa, una atmósfera más delgada causaría temperaturas extremas no permitiendo la acumulación de agua excepto en los casquetes polares (como en Marte). De acuerdo con el modelo nébula solar de la formación del Sistema Solar, la masa de la Tierra se debe en gran parte a su distancia al Sol.

La distancia entre el Sol y la Tierra y la combinación de radiación solar recibida y el efecto invernadero en la atmósfera aseguran que su superficie no sea demasiado fría o caliente para el agua líquida. Si la Tierra estuviera más alejada del Sol, el agua líquida se congelaría. Si estuviera más cercana, su temperatura superficial elevada limitaría la formación de las capas polares o forzaría al agua a existir solo como vapor. En el primer caso, la baja reflectibilidad de los océanos causaría la absorción de más energía solar. En el último caso, la Tierra sería inhabitable (al menos por las formas de vida conocidas) y tendría condiciones semejantes a las del planeta Venus.

Las teorías Gaia proponen que la vida se mantiene adecuada a las condiciones por sí misma al afectar el ambiente de la Tierra.

[editar] El cambio del estado en el agua

Copos de nieve por Wilson Bentley, 1902[editar] Estado sólido
Artículo principal: Hielo
Al estar el agua en estado sólido, todas las moléculas se encuentran unidas mediante un enlace de hidrógeno, que es un enlace intermolecular y forma una estructura parecida a un panal de abejas, lo que explica que el agua sea menos densa en estado sólido que en el estado líquido. La energía cinética de las moléculas es muy baja, es decir que las moléculas están casi inmóviles.

El agua glacial sometida a extremas temperaturas y presiones criogénicas, adquiere una alta capacidad de sublimación, al pasar de sólida a vapor por la acción energética de los elementos que la integran —oxígeno e hidrógeno— y del calor atrapado durante su proceso de congelación-expansión. Es decir, por su situación de confinamiento a grandes profundidades se deshiela parcialmente, lo cual genera vapor a una temperatura ligeramente superior del helado entorno, suficiente para socavar y formar cavernas en el interior de los densos glaciales. Estas grutas, que además contienen agua proveniente de sistemas subglaciales, involucran a las tres fases actuales del agua, donde al interactuar en un congelado ambiente subterráneo y sin la acción del viento se transforman en el cuarto estado del agua: plasma semilíquido o gelatinoso.


Agua cambiando de estado sólido a líquido.[editar] Estado líquido
Cuando el agua está en estado líquido, al tener más temperatura, aumenta la energía cinética de las moléculas, por lo tanto el movimiento de las moléculas es mayor, produciendo quiebres en los enlaces de hidrógeno, quedando algunas moléculas sueltas, y la mayoría unidas.

[editar] Estado gaseoso
Artículo principal: Vapor de agua
Cuando el agua es gaseosa, la energía cinética es tal que se rompen todos los enlaces de hidrógeno quedando todas las moléculas libres. El vapor de agua es tan invisible como el aire; el vapor que se observa sobre el agua en ebullición o en el aliento emitido en aire muy frío, está formado por gotas microscópicas de agua líquida en suspensión; lo mismo que las nubes.

[editar] Notas
1.↑ Nomenclatura de Química Inorgánica. Recomendaciones de la IUPAC de 2005. Ciriano López, Miguel Ángel; Román Polo, Pascual (versión española), Connelly, Neil G. (ed.), Damhus, Ture (ed.) Prensas Universitarias de Zaragoza, 2007
2.↑ [1] Biología Marina. Escrito por Giuseppe Cognetti, Michele Sarà, Giuseppe Magazzù. Página 39. (books.google.es ).

FUENTE:
WIKIPEDIA.ORG

lunes, 3 de enero de 2011

SOUND OF THE SILENCE BY SIMON AND GARFUN

Hello darkness, my old friend,
I've come to talk with you again,
Because a vision softly creeping,
Left its seeds while I was sleeping,
And the vision that was planted in my brain
Still remains
Within the sound of silence.
In restless dreams I walked alone
Narrow streets of cobblestone,
'Neath the halo of a street lamp,
I turned my collar to the cold and damp
When my eyes were stabbed by the flash of a neon light
That split the night
And touched the sound of silence.

And in the naked light I saw
Ten thousand people, maybe more.
People talking without speaking,
People hearing without listening,
People writing songs that voices never share
And no one dare
Disturb the sound of silence.

'Fools' said I, 'You do not know
Silence like a cancer grows.
Hear my words that I might teach you,
Take my arms that I might reach you.'
But my words like silent raindrops fell,
And echoed
In the wells of silence

And the people bowed and prayed
To the neon god they made.
And the sign flashed out its warning,
In the words that it was forming.
And the sign said, 'The words of the prophets

are written on the subway walls
And tenement halls.'
And whisper'd in the sounds of silence.
. Envia Canciones

Los diez mejores buscadores en tiempo real del 2010

30

2010
Los diez mejores buscadores en tiempo real del 2010
Escrito por Ing. Hiddekel Morrison en Lo Ultimo, tags: buscadores, buscadores en tiempo real
Durante este trimestre hemos revisado un conjunto interesante de herramientas para saber qué se mueve por las redes sociales en general y Twitter en particular, además de algunas otras herramientas útiles para elaborar informes sobre nuestra actividad en Twitter, pero, de todas, yo me quedaría con los siguientes diez buscadores a tiempo real:
Socialmention lo considero uno de mis imprescindibles. Para empezar, es capaz de buscar, prácticamente, en cualquier sitio: blogs, comentarios de posts, microblogs, marcadores, eventos, noticias, imágenes (de Flickr), audio, vídeo, etc, vamos que no hay rincón en el que no se pueda buscar. Y si esto fuera poco, Socialmention nos ofrece un sistema de alertas por correo electrónico (similar a las de las noticias de Google) y todo un panel con indicadores estadísticos para saber cuántas veces hablan de nosotros, dónde y con qué palabras clave. He de confesar que me encanta esta herramienta y, la verdad, es que me parece bastante útil. Por cierto, es gratuita.

Collecta es un servicio que conocí hace poco y con el que también podremos realizar búsquedas a tiempo real. Con este buscador podremos revisar las actualizaciones que se realizan blogs (incluyendo los comentarios), en Twitter, Facebook, Google Buzz, las imágenes que se suben a Flickr, TwitPic e Yfrog, vídeos de YouTube y Ustream. La herramienta tiene un detalle que me ha gustado, si por regla general al realizar una búsqueda nueva perdemos la anterior (salvo que la hagamos en una ventana o pestaña distinta), Collecta almacena nuestras búsquedas siempre las tendremos accesibles desde el menú lateral, por lo que podremos realizar varias búsquedas simultáneas y obtener resultados de las mismas a tiempo real.

Con TweetNews pasamos de un buscador generalista a uno centrado en Twitter y con el que potenciar la tesis que dice que esta red social es un medio de comunicación más rápido que la prensa o la TV, algo que comparto totalmente. Pues si por Twitter se mueve una gran cantidad de información y noticias, con esta herramienta podremos rastrear las noticias y su relevancia (medida en base al número de tweets que circulan por la red), datos interesantes para saber si algún hecho acontecido es o no noticia o si lo puede llegar a ser.

ChirpCity es una herramienta que permite realizar búsquedas a tiempo real en Twitter pero además combina una variable de búsqueda muy interesante, la localización geográfica. Con esta herramienta podremos realizar búsquedas a tiempo real y acotando los resultados en base a países, regiones o ciudades (aunque tanto nivel de filtrado la hace un poco lenta para mi gusto).

Open Facebook Search fue una herramienta que me sorprendió, ya que es capaz de realizar búsquedas en los perfiles abiertos de Facebook (y por cierto, el que no haya revisado la configuración de privacidad en Facebook, que le eche un vistazo o revise este post de ALT1040). Si tus usuarios están en Facebook, puede ser una herramienta interesante para conocer qué se dice en todo momento.

No podemos obviar a Google que también tiene un buscador a tiempo real que no es nada despreciable. Google Realtime Search es capaz de buscar en Twitter, presentándonos una gráfica con la distribución temporal de las menciones del tema buscado y los enlaces que se comparten al mencionar el término buscado.

IceRocket es otro servicio para buscar, casi, en cualquier rincón de la red. Con esta sencilla herramienta podremos realizar búsquedas en contenidos concretos (blogs, Twitter, MySpace, etc), filtrar por idioma de la publicación y, además, sugerir sitios nuevos en los que la aplicación debería buscar.

48ers es otro servicio para realizar búsquedas a tiempo real. Tras su estética de buscador al estilo Google, se esconde una herramienta que permite realizar búsquedas en Facebook, Twitter, Digg, Delicious o Google Buzz, además de poder localizar los trending topics del momento.

Twazzup nos permite buscar únicamente en Twitter pero ofrece un panel de resultados muy completo (que por cierto, me ha gustado mucho) y en el que podemos encontrar los enlaces más compartidos, las noticias y los usuarios que están comentando el objeto de la búsqueda (además de clasificarlos según su influencia o por el tiempo que pasó desde que realizaron el comentario).

Fuente

ItPints es un buscador sencillo y sin muchas florituras que se centra en los resultados que provienen únicamente de Facebook y Twitter (pudiendo filtrar los resultados según estos dos criterios de selección). Si nuestros campos de actuación son estas redes y tan sólo queremos realizar búsquedas, entonces puede ser una herramienta bastante útil.

Twitter This
Usuario: Password:




Relat